COMMUNITY
CHARTER SCHOOL

AP Calculus

Summer Mathematics Practice

Name \qquad Preferred email address: \qquad
Your Birthday: \qquad Cell Phone Number: \qquad
Parent/Guardian's Name(s): \qquad Home Phone Number: \qquad
Parent(s)' Email Address: \qquad Alternate Phone Number: \qquad
Favorite Motivational/Deep Quote: \qquad
\qquad
\qquad

Social Media | Who are the top three people (not friends/family) that you follow on twitter/snapchat, etc. (If you don't follow anyone, who are three celebrities/athletes/historical/etc. people that you keep up to date on)?
\qquad
/ ___ $/$
Relationship | In one paragraph, describe your relationship with mathematics. Be honest, professional and creative in your response below.

College Habits | Some key college habits that we will be building upon this year will be notetaking, homework, studying, and test taking. Complete the following survey questions to give me a sense of where you are at. (5 Strongly agree / 3 - neutral / 1 strongly disagree)

Close out | Is there anything else you want me to know about you before we start climbing to the top of the mathematical mountain?

Name: \qquad

Essential Knowledge (You will need to know these COLD for CALCULUS)

 Unit CircleEvaluate the following expressions (without a calculator).

1. $* \sin \left(90^{\circ}\right)=$
2. $* * \cos \left(\frac{\pi}{4}\right)=$
3. $* * \sin \left(\frac{5 \pi}{4}\right)=$
4. $* \cos \left(135^{\circ}\right)=$
5. $* * \tan \left(\frac{5 \pi}{4}\right)=$
6. $\tan \left(180^{\circ}\right)=$
7. $* * \sin \left(-\frac{\pi}{4}\right)=$
8. $* \cos \left(-90^{\circ}\right)=$
9. $* * \sin \left(150^{\circ}\right)=$
10. $* * \cos \left(\frac{7 \pi}{6}\right)=$
11. $* * \sin \left(\frac{5 \pi}{6}\right)=$
12. $\cos \left(-135^{\circ}\right)=$
13. $* * \tan \left(\frac{9 \pi}{6}\right)=$
14. ${ }^{*} \tan \left(135^{\circ}\right)=$
15. $* * \sin \left(-\frac{\pi}{3}\right)=$
16. $\cos \left(-120^{\circ}\right)=$

The given point P is located on the Unit Circle. State the quadrant, the angle θ (radians) also $\sin \theta, \cos \theta$, and $\tan \theta$.
17. $* * P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad$ Quad: Angle:
$\sin \theta=$
$\cos \theta=$

$$
\tan \theta=
$$

18. * $P(0,-1)$

Quad:
Angle:
$\sin \theta=$
19. $P\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) \quad$ Quad:

Angle:
$\sin \theta=$

$$
\cos \theta=
$$

$$
\tan \theta=
$$

Essential Knowledge (You will need to know these COLD for CALCULUS) (/18) Parent Functions - it is IMPERATIVE that you know your parent functions. These are KEY to accessing the tough calculus that we will do this year.

Graph each of the following parent functions on the axis provided:

${ }^{* *} g(x)=x^{2}-1$		${ }^{* *} f(x)=2\|x-1\|$		${ }^{* *} h(x)=-\sqrt{x}-2$			
$-\infty$	-100	1	-	\|	-		
	\#	-	\square		\#		
${ }^{* *} g(x)=e^{x-1}+3$		${ }^{*} g(x)=-3 x-2$		$f(x)=\|x+5\|-2$			
-				- ${ }^{\text {a }}$			
				$\square \quad+\quad+$			
		\begin{tabular}{l\|l	l	l	l	}	
\hline							
\end{tabular}							
		$\square \square^{+}$					
		- ${ }^{+}$					
$\square 1$	-1-11+1	+ \| \mid \|		$\square 1$ \|	\square		
h(x) $=(x-2)^{3}+4$		$g(x)=\sqrt{x-3}+2$		${ }^{ *} f(x)=\ln (x-1)$			
$\square{ }^{+}$		\pm					
$+x^{2}$							
		-	\#				

Equation Solving (
 \qquad /24)

[Non-calculator] Solve each of the following equations for the unknown variable. Show all your work. For trigonometric functions, the variable is assumed to be on the interval $0 \leq x \leq 2 \pi$.

1. ${ }^{* *} a^{2}-5 a+3=-3$	2. $* 3 a^{2}+7 a-5=1$	3. ** $2 a^{2}-2=-7 a+2$
4. $8 r^{3}-64 r^{2}=8-r$	5. ${ }^{* *} e^{3 x}=15$	6. ${ }^{*} e^{3 x}=7 e^{x}$
7. ${ }^{* *} \ln (5 x-4)=0$	8. ${ }^{*} \ln (2 x)-4=3$	9. $* * 2 \sin x=\sqrt{3}$
$\text { 10. } \cos (\pi x)=\frac{1}{2}$	11. $* * 2 \tan x+6=8$	12. * $2 \sec x+2=\frac{1}{2}$

Expression Simplifying (/ 22)

Simplify each of the following expressions -11 is the tough one!

1. $* * 3 x^{2}-4 x y+4 x^{2}+3 x y$	2. $* * 5 v^{2}-7 u+v^{2}-u$	$\text { 3. } \begin{aligned} & *-6 x^{2} y z+4 y^{2} z+ \\ & 7 y^{2} z+11 x^{2} y z \end{aligned}$
$\text { 4. } \begin{aligned} & * * 7 m-9 n^{2}-\left(-3 n^{2}+\right. \\ & 8 m+1)+15 \end{aligned}$	5. $a-2(b-c)+5(a+b-$ c) -14	$\text { 6. } \begin{aligned} & * 2 u v-3\left(u v+u^{2} v^{2}\right)+ \\ & 4\left(u^{2} v^{2}\right) \end{aligned}$
7. $* *\left(\frac{18 m+24}{12 m}\right)\left(\frac{10 m^{2}}{3 m+4}\right)$	8. ** $e^{2 x}\left(x^{2}+e^{3 x}\right)$	9. $* \ln (3 x)-\ln (4 y)$
$\text { 10. } * *\left(\frac{8 x^{3}}{27 y^{8}}\right)\left(\frac{9 y^{3}}{12 x^{2}}\right)$	11. $\frac{\frac{x-2}{x^{2}-9}}{\frac{x^{2}-4}{x+3}}$	

Limits and Continuity (

1. ${ }^{* *}$ The graph of $y=f(x)$ is given below. Identify each of the statements as true or false, explain if requested
a) $-\lim _{x \rightarrow-1^{+}} f(x)=1$
b) $-\lim _{x \rightarrow 0^{-}} f(x)=0$
c) $-\lim _{x \rightarrow 0^{-}} f(x)=1$
d) $-\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$
e) $\ldots \lim _{x \rightarrow 0} f(x)$ exists

f) $-\lim _{x \rightarrow 0} f(x)=0$
g) $\ldots \lim _{x \rightarrow 0} f(x)=1 \quad$ Explain:
h) $\ldots \lim _{x \rightarrow 1} f(x)=1$
i) $\quad \lim _{x \rightarrow 1} f(x)=0 \quad$ Explain:
j) $-\lim _{x \rightarrow 2^{-}} f(x)=2$

In exercises 2-4| Determine the value of the following limits.
2. $\underset{x \rightarrow-3}{x+\lim _{x} \frac{x^{2}+7 x+12}{x^{2}-9}=}$
3. $* \lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-15}=$
4. $\lim _{x \rightarrow 2} \frac{x^{3}-2 x^{2}+x-2}{x-2}=$

For exercises 5-6| Does $\lim _{x \rightarrow a} f(x)$ exist? If it does, give its value. If it does not exist, give an explanation.
5. $\quad{ }^{* *} a=2, f(x)=\left\{\begin{array}{ll}2-x, & \text { if } x<2 \\ 1, & \text { if } x=2 \\ x^{2}-4, & \text { if } x>2\end{array}\right\}$
6. $* a=1, f(x)=\left\{\begin{array}{ll}2-x, & \text { if } x<1 \\ x+1, & \text { if } x \geq 1\end{array}\right\}$
7. Determine the following limits at positive and negative infinity.
a) $* * \lim _{x \rightarrow \infty} e^{3 x}=$
b) $* * \lim _{x \rightarrow \infty} \frac{5}{x^{4}}=$
c) $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{2}}=$
d) $\lim _{x \rightarrow \infty} \frac{6-x^{2}+4 x}{5 x^{2}-8 x+6}=$
8. **What are the three requirements for a function to be continuous?
9. ${ }^{* *}$ Find a value for a so that the function
$f(x)=\left\{\begin{array}{ll}x^{2}-1, & x<3 \\ 2 a x, & x \geq 3\end{array}\right\}$
is continuous.
10. Find a value for a so that the function
$f(x)=\left\{\begin{array}{ll}x^{2}+x+a, & x<1 \\ x^{3}, & x \geq 1\end{array}\right\}$
is continuous.

